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1. 

The power spectrum of the signal measured from a gearbox typically consists of peaks
located at integer multiples of the meshing frequency fg =Nfs , where N is the number of
teeth of the gear and fs is the shaft frequency. In reality, there also exist ‘‘modulating’’ side
bands, which have the appearance of narrow-band processes, recording any imperfection
stemming from the gears to the entire system set-up [4]. When faults (such as a crack,
eccentricity, etc.) develop, these narrow-band components grow, and provide the useful
signature to detect any anomaly in the gearbox.

The gear vibration signal can be effectively analyzed by using the synchronous averaging
method [1]. It is a novel technique which is able to reject ‘‘irrelevant’’ parts and retain only
the essential components in gear meshing dynamics. On top of synchronous averaging, a
number of methods are available for crack detection purposes. McFadden suggested using
amplitude and phase modulations of the synchronous signal to achieve early crack
detection and was successful in a number of cases [10]. Martin and Ismail showed that
the change in statistical moments can be used to distinguish between the signals from the
good and the cracked gears [9]. In general, a crack size of at least 20% can be detected
by the existing method [9]. Recently, much attention has been given to the time–frequency
wavelet transform on the synchronous averaged signal [2, 4]. It is a local method and thus
has the potential to locate exactly where the cracked tooth is.

In this note, we examine the idea of using the non-linear dynamical system approach
for crack detection in a gearbox system [7]. The assumption on which this study is based
is that the ‘‘modulating’’ narrow-band process of the gear signal describes some degree of
chaos in the gear meshing dynamics. It then implies the potential of using non-linear
techniques to detect small changes in the gear vibration due to, e.g., a crack, or ‘‘secondary
effects’’ caused by the presence of a crack, such as the imbalance of the shaft, leading to
resonance. Our primary interest is to study the sensitivity of using a dimension measure
to characterize the vibration of defective gears and to estimate the dimension quantity in
real time.

In this study, we find that it is possible to use the dimension approach to detect a 15%
crack. The dimension estimate tends to decrease when certain thresholds of the crack size
and shaft speed are passed. Since the dimension estimate is a global indicator, it raises
concern as to how much of the gear dynamics is captured in the calculation. To address
this issue, we studied the recurrence of the embedded gear signal, and sufficient evidence
was found to answer this question in the positive. We also computed the filtered signal
and found qualitatively similar results. The recurrence technique provides an interesting
alternative for the crack detection in a realistic gearbox, since it does not rely on the
estimation of a statistical quantity. In the next section, the methods and experimental
set-up are described. The results of data analysis and on-line calculations are given in the
last section.
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2. 

Using the method of delay, the measurement data {x1, . . . ,xN} is transformed to a set
of vectors {y1, . . . ,yN−(m−1)t} in Rm by

yi 0 (xi , xi+ r , . . . xi+(m−1)t ), (1)

where m and t are called the embedding dimension and delay, respectively [11]. To study
{yk}, the percentage of time, m(r, yj ), for which the trajectory spends in the r-neighborhood
of some yj is estimated. The point-wise dimension can then by defined as

dj =lim
r:0

log m(r, yj )
log (r)

, (2)

provided that the limit exists. By the theorem of Young and other general results, the
property of the point-wise dimension can lead to many subtle consequences of the
dynamics [12]. In the experiment, we cannot pursue the rigor of these nice results.
Instead, dj is averaged over a subset of {yk} to give a global indicator d for the signal (see
reference [3] for related practical issues). We assume that d is a function of other system
parameters, such as the tooth’s stiffness, shaft speed and so on. The sensitivity of chaotic
dynamics implies that one may be able to use d to capture small variations in these system
parameters.

Since d is a global indicator, how much of it is derived from the gear-meshing process
is generally not clear. Based on the recurrence property of the gear signal, this issue may
be resolved. The ‘‘impact’’ dynamics of the gears imply that it is possible to define the
recurrent time Tr to a set of properly chosen r-balls in Rm. Tr is a random variable defined
by its density function P(Tr ). The density function for the cracked gear should show peaks
located at Tr =1/fs due to the periodic impacts from the bad tooth. On the other hand,
this ‘‘regularity’’ is disrupted in the good gear due to the narrow-band component in the
signal. Hence, a more regular looking P(Tr ) indicates potential faults being developed in the
gears.

The experimental set-up of the gearbox and the data acquisition system, are
sketched in Figure 1. The test rig consists of a single stage gearbox, two DC electric motors,
a DC motor controller and resistors for power dissipation. Commercially available mild

Figure 1. Schematics of the gearbox system.
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Figure 2. The 33% crack tooth.

steel gears are used in the experiment. The gears we used have a teeth ratio of 14:16. The
crack is deliberately introduced at the driving gear which has 16 teeth, and it is made at
the root of the tooth in the direction of the shaft rotation (Figure 2). The vibration signal
is measured from the accelerometer attached at the housing of the bearing. The signal is
first (analog) low-pass filtered at the cut-off frequency 10fg and then digitized and stored
in the computer.

Figure 3. Power spectral density functions at 707 r.p.m for (a) unfiltered 0% crack gear data, (b) filtered 0%
crack gear data, (c) unfiltered 15% crack gear data and (d) filtered 15% crack gear data; the + sign denotes
the first meshing frequency. The other peaks seen in the figures (at 120 Hz and 240 Hz) result from the distortion
of the power line signal (60 Hz) by the DC motor controller (unit of horizontal axis: rad/s).
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3. 

Three different crack sizes, 15%, 25% and 33%, are analyzed in the experiment. Two
shaft speeds of 707 r.p.m. ( fg =190 Hz) and 770 r.p.m ( fg =207 Hz) are used for each
case. The data is sampled at 5000 Hz and 32 000 points are stored for each case. A typical
power spectrum at 707 r.p.m. is shown in Figure 3.

The dimension estimate obtained from equation (2) is shown in Figure 4. The value of
d first decreases with the crack size from 0% to 25% and then increases from 25% to 33%.
The decrease is the result of the periodic impact from the bad tooth [6]. The increase in
d for larger crack size is due to the excitation of other components in the system, which
results in the increase of complexity in the dynamics. For the shaft speed of 707 r.p.m.,
d decreases by 29% for the 15% crack size. Apart from the slight increase from 0% to
15% crack size, the d value calculated at the 770 r.p.m. shaft speed is consistent with that
at 707 r.p.m.

The question of how much gear meshing dynamics is captured in the calculation of d
can be answered in the positive by the recurrent time analysis. Ideally, the dynamics returns
to the r-neighborhood for every gear impact. In reality, the recurrence is random and is
characterized by a random recurrent time Tr .

The measured density functions P(Tr ) at 707 r.p.m. are shown in Figure 5. It takes less
computation time to obtain these results than for the d value. However, more memory
space is required, since the ensemble from which m(r, yi ) is calculated has to be stored to
compute P(Tr ). For the cracked gear, peaks located at Tr = k/fs , k=1, . . . are seen. They
correspond to the periodic impact per revolution from the bad tooth. There appears to
be less ‘‘structure’’ in the P(Tr ) of the good gear, although peaks located at k/fs , k=1, . . .
can still be identified. We believe that this is due to the narrow-band process causing
variations in the impact time.

We also study the filtered gear data. The filter is a digital (square) band-pass with the
center frequency located at the first meshing frequency fg . The band is a 214% fall-off
from the first meshing fg for 707 r.p.m. and 28% for 770 r.p.m. The dimension estimate

Figure 4. The plot of d versus crack size (unfiltered data, delay=3, data sampling rate=5 kHz).
w, 707 r.p.m.; ×, 770 r.p.m.
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Figure 5. The plot of P(Tr) versus Tr (unfiltered data at 707 r.p.m.): (a) 0% crack; (b) 15% crack.

is naturally smaller (Figure 6). However, a similar trend as seen in the unfiltered case
is found. For the 15% crack, the calculated d’s show a 10% and a 16% decreases for
707 r.p.m. and 770 r.p.m., respectively. One should note that the 15% difference in the
d values of the good and bad gears actually results from the very similar-looking spectra
(Figures 3(b) and 3(d)). The non-linear approach takes into account the topological
property of the time series, which cannot be obtained from amplitude-based calculations.
For example, the spectrum of a time series remains unchanged if its phase is randomized.
However, this results in a very different topology from the original time series after the
delay reconstruction procedure.

These results encourage us to use the dimension estimate d for the on-line monitoring
of gearbox signals. The on-line approach eliminates the storage problem and saves
time for dimension analysis in general. The problem is almost analogous to finding
level-crossing statistics in random vibration [5], except that one now has to add a piece
of algorithm to do the delay embedding. Once that is accomplished, a memory space

Figure 6. The dimension estimate d versus crack size (filtered data, delay=3, data sampling rate=5 kHz).
w, 707 r.p.m.; ×, 770 r.p.m.
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Figure 7. An on-line dimension estimate (horizontal scale is arbitrary). Parameters: 770 r.p.m., unfiltered r=3,
sampling frequency=100 Hz. (a) 25% crack size, m=11, 13, . . . , 19; (b) 15% crack size, m=15, 17, 19. The
dotted line in (b) is given for comparison with the case m=17, 25% crack.

on the order of 2(m−1)r elements (see equation (1)) has to be reserved to perform the
calculation. A prototype software has been developed and run, on-line, with the gear
experiment [8]. The result of the case 770 r.p.m., 25% crack size is shown in Figure 7.
The corresponding log (m) versus log (r) curve and its local slope estimate are given.
The slope matches the off-line calculation reasonably well (Figure 3). The speed of the
on-line calculation is controlled by the data sampling rate and the m and k parameters
of the embedding procedure. For the data reported here, the sampling rate is set at 100 Hz.
For a typical run at the speed of 770 r.p.m., a good scaling range can be reached for about
5 minutes (030 000 data points).
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